
ORNL/TM-2021/2022

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Equations of Motion for the Vertical 
Rigid-Body Rotor: Linear and 
Nonlinear Cases 

Hector Laos

December 2021



DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy 
(DOE) SciTech Connect.

Website www.osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the 
following source:

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange 
representatives, and International Nuclear Information System representatives from the following 
source:

Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Website http://www.osti.gov/ 

This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States 
Government nor any agency thereof, nor any of their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that 
its use would not infringe privately owned rights. Reference herein to 
any specific commercial product, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.

http://www.osti.gov/
http://classic.ntis.gov/
http://www.osti.gov/contact.html


ORNL/TM-2021/2022

Enrichment Science and Engineering Division

EQUATIONS OF MOTION FOR THE VERTICAL RIGID-BODY ROTOR:
LINEAR AND NONLINEAR CASES

Hector Laos

December 2021

Prepared by
OAK RIDGE NATIONAL LABORATORY

Oak Ridge, TN 37831-6283
managed by

UT-BATTELLE, LLC
for the

US DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725





CONTENTS

LIST OF FIGURES ......................................................................................................................................iv
LIST OF TABLES........................................................................................................................................iv
ACRONYNMS ..............................................................................................................................................v
ACKNOWLEDGEMENTS..........................................................................................................................vi
NOMENCLATURE ....................................................................................................................................vii
PREFACE...................................................................................................................................................viii
ABSTRACT...................................................................................................................................................1
1. DEFINITION OF THE EQUATIONS OF MOTION...........................................................................1
2. KINETIC ENERGY OF A RIGID-BODY ROTOR.............................................................................2
3. NONLINEAR GENERALIZED FORCES ...........................................................................................4
4. LINEAR FORM OF THE EOM............................................................................................................5
5. RESULTS FROM THE LINEAR EXAMPLE .....................................................................................6
6. PROCEDURE FOR SOLVING THE NONLINEAR EOM .................................................................9
7. RESULTS FOR THE NONLINEAR EXAMPLE ..............................................................................10
8. EXAMPLE THAT EXHIBITS CHAOTIC BEHAVIOR ...................................................................12
9. DUFFING EQUATION.......................................................................................................................13
10. SOURCES OF NONLINEARITIES ON ROTORS............................................................................16
11. CONCLUSIONS .................................................................................................................................17
12. REFERENCES ....................................................................................................................................18
APPENDIX A............................................................................................................................................A-1



LIST OF FIGURES

Figure 1. Rigid-body rotor. ............................................................................................................................2
Figure 2. Campbell diagram...........................................................................................................................7
Figure 3. Displacement u amplitude (𝑚𝜀 =  1.0E-2 kg.m and 𝛽 = 0.0 rad). ..............................................7
Figure 4. Displacement v amplitude (𝑚𝜀 =  1.0E-2 kg.m and 𝛽 = 0.0 rad). ..............................................8
Figure 5. Displacement u amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 = 1.0E-3 rad)................................................8
Figure 6. Displacement v amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 = 1.0E-3 rad). ...............................................8
Figure 7. Displacement u amplitude (𝑚𝜀 =  1.0E-2 kg.m and 𝛽 = 0.0 rad). .............................................10
Figure 8. Displacement v amplitude (𝑚𝜀 =  1.0E-2 kg.m and 𝛽 = 0.0 rad)...............................................10
Figure 9. Displacement u amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 =  1.0E-3 rad). ............................................11
Figure 10. Displacement v amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 =  1.0E-3 rad). ..........................................11
Figure 11. Displacement u amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 =  1.0E-2 rad). ..........................................12
Figure 12. Displacement v amplitude (𝑚𝜀 = 0.0 kg.m and 𝛽 =  1.0E-2 rad). ..........................................12
Figure 13. Orbits on the x–y plane shown in time (vertical axis). ...............................................................13
Figure 14. Orbits on the x–y plane for the entire operational range.............................................................13
Figure 15. Frequency response. ...................................................................................................................14
Figure 16. Frequency response (𝜇 = 0.0400); jump phenomena—paths to follow. ..................................15
Figure 17. Transient result for 𝜇 = 0.0400. ................................................................................................15
Figure 18. Chaotic response.........................................................................................................................16

LIST OF TABLES

Table 1. Displacement and velocities at the supports. ...................................................................................4
Table 2. Data from the Dynamics of Rotating Machines [9]. ........................................................................6



ACRONYMS

CG center of gravity
EOM equations of motion



ACKNOWLEDGMENTS

The author wishes to recognize Brian Damiano, PhD, for his full support with this initiative.



NOMENCLATURE

Greek Variables:

𝜃 Angular displacement (rad)
𝜓 Angular displacement (rad)
𝜙 Angular rotation (rad)
Ω Angular speed at steady-state conditions (rad/s)
𝛼 Angular acceleration (rad/s2)
𝜔𝑥, 𝜔𝑦, 𝜔𝑧 Angular velocities on x, y, z
𝛽 Rotational unbalance (rad)
𝛾 Phase angle (in β) (rad)
𝑚𝜀 Lateral unbalance (kg.m)
𝛿 Phase angle (in 𝑚𝜀 )
𝜇 Nonlinear stiffness coefficient (N/m3)
𝜔𝑛 Natural frequency (rad/s)

More Variables & Definitions:

ℒ Lagrangian
𝑞𝑖, 𝑞𝑖,𝑞𝑖 General coordinate and its derivatives; applicable to all time (t) parameters
𝐹𝑞𝑖 General force coordinate applied on 𝑞𝑖
𝑇𝐷 Kinetic energy (J)
a, b Elevations from center of gravity (m)
𝐼𝑑 Diametral moment of inertia (kg.m2)
𝐼𝑝 Polar moment of inertia (kg.m2)
𝑚𝑑 Rigid-body mass (kg)
g Acceleration of gravity (m/s2)
x, y, z Coordinates of reference
u Displacement on axis x (m)
v Displacement on axis y (m)
𝑘𝑥1, 𝑘𝑥2 Stiffness at locations 1 and 2 on axis x (N/m)
𝑘𝑦1, 𝑘𝑦2 Stiffness at locations 1 and 2 on axis y (N/m)
𝑐𝑥1, 𝑐𝑥2 Damping at locations 1 and 2 on axis x (N.s/m)
𝑐𝑦1, 𝑐𝑦2 Damping at locations 1 and 2 on axis y (N.s/m)
𝑘##,𝑐## Equivalent stiffness and damping; Appendix A
c Damping (N.s/m)
F Excitation force (N)
A Amplitude of the nonlinear example (m)

Vectors and Matrices:

[𝑀] Mass matrix
[𝐺] Gyroscopic matrix
[𝐶] Damping matrix
[𝐾] Stiffness matrix
{0} Zero vector
{𝑈} Unbalance vector



PREFACE

This paper started as a presentation to the members of Oak Ridge National Laboratory’s Machine 
Dynamics Group, and it has had several iterations. The paper was later presented at the IMAC 39 
Conference under the same title [1], and this version includes a new section to explain the nonlinear 
phenomena with the Duffing equation. The present document includes an entire section on sources of 
nonlinearities on rotors (not included in previous versions) that shows several mechanisms that produce 
instabilities on the rotor-bearing systems.



ABSTRACT

Centuries ago, the prolific mathematician Leonhard Euler (1707–1783) wrote down the equations of 
motion (EOM) for the heavy symmetrical top with one point fixed. The resulting set of equations turned 
out to be nonlinear and had a limited number of closed-form solutions. 

Today, tools such as transfer matrix and finite elements enable the calculation of the rotordynamic 
properties for rotor-bearing systems. Some of these tools rely on the “linearized” version of the EOM to 
calculate the eigenvalues, unbalance response, or transients in these systems.

In fact, industry standards mandate that rotors be precisely balanced to have safe operational 
characteristics. However, in some cases, the nonlinear aspect of the EOM should be considered.

The purpose of this paper is to show examples of how the linear vs. nonlinear formulations differ. This 
paper will also show how excessive unbalance is capable of dramatically altering the behavior of the 
system and can produce chaotic motions associated with the “jump” phenomenon.

1. DEFINITION OF THE EQUATIONS OF MOTION

The EOMs are defined using the Lagrange equations [2]:

𝑑
𝑑𝑡

∂ℒ
∂𝑞𝑖

―
∂ℒ
∂𝑞𝑖

=  𝐹𝑞𝑖, (1)

where the Lagrangian ℒ (ℒ = 𝑇𝐷 ― 𝑈𝐷) is defined as the difference between the kinetic energy (𝑇𝐷) and 
the potential energy (𝑈𝐷). Also, 𝑖 (1 ≤ 𝑖 ≤ 𝑁) is the number of degrees of freedom, the generalized 
independent coordinates are 𝑞𝑖, and the generalized forces are 𝐹𝑞𝑖. 

The generalized coordinates in the vertical rigid rotor are 𝑢, 𝑣, 𝜃, 𝜓, as shown in Figure 1. The Newtonian 
approach (not the Lagrangian) will be used for the external forces, including springs and dampers 
𝐹𝑞𝑖 = ― 𝐹𝑢 , ―𝐹𝑣,  ―𝐹𝜃, ―𝐹𝜓 , and for the effect of the rotor weight. This will cancel out the potential 

energy (𝑈𝐷) in the Lagrangian, and the expression in Eq. (1) is reduced to the following [3]:

𝑑
𝑑𝑡

∂𝑇𝐷

∂ ―
∂𝑇𝐷

∂𝑞𝑖
=  𝐹𝑞𝑖

(2)

For the sake of clarity, the definition of the terms in Eq. (2), 𝑇𝐷 and 𝐹𝑞𝑖, will be explained in different 
sections.



Figure 1. Rigid-body rotor.

2. KINETIC ENERGY OF A RIGID-BODY ROTOR

The kinetic energy of a rigid-body rotor is as follows [4]:

𝑇𝐷 =  
1
2  𝑚𝑑 𝑢2 +  𝑣2 +  𝑤2 +  

1
2  𝐼𝑑  𝜔2

𝑥 +  𝜔2
𝑦 +  

1
2  𝐼𝑝 𝜔2

𝑧 . (3)

Figure 1 shows the vertical rigid-body rotor with its system of coordinates, the location of the center of 
gravity (CG), and the parameters that will be used to define the displacements and rotations at the CG.

In this report, only the lateral displacements (𝑢, 𝑣) and the rotations (𝜃, 𝜓,𝜙) were considered. All lateral 
displacement and rotations coincide with the CG. 

The axial movement 𝑤 is assumed to be decoupled from the lateral displacements. Therefore, 𝑤 will not 
be considered any further in this paper. 

The rotor spin angle 𝜙 will be kept because the transient unbalance is a function of 𝜙 and its derivatives.

The angular velocity vector {𝜔} will be defined as a function of the angular velocities of the Euler angles: 
𝜃, 𝜓,𝜙. 

 {𝜔}𝑇 =  {𝜔𝑥 𝜔𝑦 𝜔𝑧} (4)



The process consists of a series of rotations starting from an initial axis {𝑌}, as shown in the following 
sequence [5], [6], [7]:

{𝜔} =   𝜓 {𝑌} +  𝜃  {𝑥1} + 𝜙, (5)

and

𝜔𝑥𝜔𝑦𝜔𝑧
=  

0
0
𝜙

+ 
cos 𝜙 sin 𝜙 0

― sin 𝜙 cos 𝜙 0
0 0 1

𝜃
0
0

  +   
cos 𝜙 sin 𝜙 0

― sin 𝜙 cos 𝜙 0
0 0 1

1 0 0
0 cos 𝜃 sin 𝜃
0 ― sin 𝜃 cos 𝜃

0
𝜓
0

. (6)

Solving (6), the angular velocity vector {𝜔} is obtained:

𝜔𝑥𝜔𝑦𝜔𝑧
=  

    𝜃 cos 𝜙 +  𝜓 sin 𝜙 cos 𝜃
― 𝜃 sin 𝜙 +  𝜓 cos 𝜙 cos 𝜃

   𝜙 ―  𝜓 sin 𝜃
. (7)

Replacing  𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 in the kinetic energy 𝑇𝐷 in Eq. (3) produces

𝑇𝐷 =  
1
2  𝑚𝑑 𝑢2 +  𝑣2 +

1
2  𝐼𝑑  𝜃2 +   𝜓2 cos 2

 𝜃 +  
1
2  𝐼𝑝  𝜙 ―  𝜓 sin 𝜃

2
. (8)

The expression of 𝑇𝐷 in Eq. (8) is replaced in Eq. (2) to define the EOM on the generalized coordinates.

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝑢 ―  
∂𝑇𝐷

∂𝑢 =  𝑚𝑑𝑢 = ― 𝐹𝑢. (9)

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝑣 ―  
∂𝑇𝐷

∂𝑣 =  𝑚𝑑𝑣 =  ―𝐹𝑣  . (10)

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝜃 ―  
∂𝑇𝐷

∂𝜃 =  𝐼𝑑 𝜃 +  𝐼𝑝 𝜙 𝜓 cos 𝜃 + 𝐼𝑑 ― 𝐼𝑝  𝜓2 sin 𝜃 cos 𝜃 =  ―𝐹𝜃. (11)

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝜓 ―  
∂𝑇𝐷

∂𝜓
=  𝐼𝑑 cos2 𝜃 + 𝐼𝑝 sin2 𝜃 𝜓 ―  𝐼𝑝𝜙 sin 𝜃 ― 𝐼𝑝 𝜙 𝜃  cos 𝜃 + 2 𝐼𝑝 ― 𝐼𝑑  𝜓 𝜃 sin 𝜃
cos 𝜃 =  ―𝐹𝜓 .

(12)

The expressions (9)–(12) are the nonlinear form of the EOM. Canceling out the higher-order terms and at 
steady-state conditions, 𝜙 = 0, 𝜙 = Ω , the linear form for small angles can be obtained, as shown in the 
following equations:

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝑢 ―  
∂𝑇𝐷

∂𝑢 =  𝑚𝑑𝑢 = ― 𝐹𝑢, (13)



𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝑣 ―  
∂𝑇𝐷

∂𝑣 =  𝑚𝑑𝑣 =  ―𝐹𝑣, (14)

𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝜃 ―  
∂𝑇𝐷

∂𝜃 =  𝐼𝑑 𝜃 +  𝐼𝑝 Ω 𝜓 = ―𝐹𝜃, (15)

and
𝑑
𝑑𝑡

∂ 𝑇𝐷

∂𝜓 ―  
∂𝑇𝐷

∂𝜓 =  𝐼𝑑 𝜓 ―   𝐼𝑝Ω 𝜃 =  ―𝐹𝜓. (16)

These expressions will be linear if the generalized forces (𝐹𝑞𝑖) are in linear form as well.

3. NONLINEAR GENERALIZED FORCES

The nonlinear generalized forces are calculated using a Newtonian approach. Table 1 defines the 
displacements and velocities at the end points of Figure 1 (points 1 and 2) on the x–z and y–z planes.

Table 1. Displacement and velocities at the supports.

Planes Plane x–z Plane y–z
Displacement—1 𝑢 ― 𝑎 sin 𝜓 𝑣 + 𝑎 sin 𝜃
Displacement—2 𝑢 + 𝑏 sin 𝜓 𝑣 ― 𝑏 sin 𝜃
Velocity—1 𝑢 ― 𝑎 𝜓cos 𝜓 𝑣 + 𝑎𝜃cos 𝜃
Velocity—2 𝑢 + 𝑏 𝜓cos 𝜓 𝑣 ― 𝑏𝜃cos 𝜃

The stiffness (𝑘𝐴𝑥𝑖𝑠 #) and damping (𝑐𝐴𝑥𝑖𝑠 #) at the supports at each plane are known where the numbers 
(#) denote the end points 1 or 2. The generalized forces will take the following forms:

𝐹𝑢 =  𝑘𝑥1 𝑢 ― 𝑎 sin 𝜓 + 𝑘𝑥2 𝑢 + 𝑏 sin 𝜓 + 𝑐𝑥1 𝑢 ― 𝑎 𝜓cos 𝜓 + 𝑐𝑥2 𝑢 + 𝑏 𝜓cos 𝜓 , (17)

𝐹𝑣 =  𝑘𝑦1(𝑣 + 𝑎 sin 𝜃) + 𝑘𝑦2(𝑣 ― 𝑏 sin 𝜃) + 𝑐𝑦1 𝑣 + 𝑎𝜃cos 𝜃 + 𝑐𝑦2 𝑣 ― 𝑏𝜃cos 𝜃 , (18)

𝐹𝜃 = 𝑎𝑘𝑦1(𝑣 + 𝑎 sin 𝜃) ―𝑏𝑘𝑦2(𝑣 ― 𝑏 sin 𝜃) 
+ 𝑎𝑐𝑦1 𝑣 + 𝑎𝜃cos 𝜃 ―𝑏𝑐𝑦2 𝑣 ― 𝑏𝜃cos 𝜃 , 

(19)

and
𝐹𝜓 = ―𝑎𝑘𝑥1 𝑢 ― 𝑎 sin 𝜓 ― 𝑏𝑘𝑥2 𝑢 + 𝑏 sin 𝜓

           ― 𝑎𝑐𝑥1 𝑢 ― 𝑎 𝜓cos 𝜓 + 𝑏𝑐𝑥2 𝑢 + 𝑏 𝜓cos 𝜓 . 
(20)

The following equations show how the grouping of the common terms is defined:

𝐹𝑢 =  𝑘𝑥𝑇𝑢 +  𝑘𝑥𝐶 sin 𝜓 +  𝑐𝑥𝑇𝑢 +  𝑐𝑥𝐶𝜓cos 𝜓 , (21)



𝐹𝑣 =   𝑘𝑦𝑇𝑣 ―  𝑘𝑦𝐶 sin 𝜃 + 𝑐𝑦𝑇𝑣 ―  𝑐𝑦𝐶𝜃cos 𝜃 , (22)

𝐹𝜃 =  ―𝑘𝑦𝐶𝑣 +  𝑘𝑦𝑅 sin 𝜃 ― 𝑐𝑦𝐶𝑣 +  𝑐𝑦𝑅𝜃cos 𝜃 , (23)

and
𝐹𝜓 = 𝑘𝑥𝐶𝑢 +  𝑘𝑥𝑅 sin 𝜓 +  𝑐𝑥𝐶𝑢 +  𝑐𝑥𝑅𝜓cos 𝜓 . (24)

The equivalent stiffness and damping shown in the previous expressions are shown in Appendix A.

4. LINEAR FORM OF THE EOM

For steady-state conditions 𝜙 = Ω , the linearized form of the EOM used to solve the eigenvalues is

[𝑀]{𝑞} +  (Ω [𝐺] + [𝐶]){𝑞} + [𝐾]{𝑞} =  {0}. (25)

The following EOM is used to solve the unbalance response:

[𝑀]{𝑞} +  (Ω [𝐺] + [𝐶]){𝑞} + [𝐾]{𝑞} =  {𝑈}, (26)

where the matrices (mass [𝑀],  gyroscopic [𝐺], damping [𝐶], and stiffness [𝐾]), and vector (displacement 
{𝑞}) from Eqs. (25) and (26) are defined using Eqs. (13)–(16) and the linearized form of Eqs. (21)–(24):

 {𝑞}𝑇 =  [𝑢    𝑣    𝜃    𝜓] , (27)

[𝑀] =
𝑚𝑑  0
0  𝑚𝑑

 0    0
 0    0

0     0
0     0

 𝐼𝑑   0
 0   𝐼𝑑

, (28)

[𝐺] =  

0  0
0  0   0    0

0     0
0  0
0  0

0 𝐼𝑝
 ― 𝐼𝑝 0

, (29)

[𝐶] =  

   𝑐𝑥𝑇 0
 0      𝑐𝑦𝑇

0   𝑐𝑥𝐶
―𝑐𝑦𝐶 0

0 ―𝑐𝑦𝐶
   𝑐𝑥𝐶 0

    𝑐𝑦𝑅 0
     0    𝑐𝑥𝑅

, (30)

and

[𝐾] =  

   𝑘𝑥𝑇            0
0              𝑘𝑦𝑇

0   𝑘𝑥𝐶
―𝑘𝑦𝐶 0

    0 ―𝑘𝑦𝐶 ― 𝑚𝑑𝑔
 𝑘𝑥𝐶 + 𝑚𝑑𝑔 0

    𝑘𝑦𝑅 0
     0    𝑘𝑥𝑅

. (31)

The effect of weight has also been included in the stiffness matrix [𝐾]. Finally, the unbalance vector {𝑈} 
[8] is



{𝑈} =  

                   𝑚𝜀 Ω2 cos(Ω𝑡 +  𝛿)
                   𝑚𝜀 Ω2 sin(Ω𝑡 +  𝛿)
― 𝐼𝑑 ― 𝐼𝑝  𝛽 Ω2 sin(Ω𝑡 +  𝛾)

     𝐼𝑑 ― 𝐼𝑝  𝛽 Ω2 cos(Ω𝑡 +  𝛾)

. (32)

The eccentricity (𝜀) of the rotor creates an unbalance (𝑚𝜀). If the axis of rotation has an angle 𝛽 relative 
to its geometric axis, it creates a rotational unbalance of magnitude 𝐼𝑑 ― 𝐼𝑝  𝛽. No angular acceleration 
component exists at steady-state conditions, but this effect will be considered in the solution of the 
nonlinear cases. The phase angles 𝛿 and 𝛾 are used to provide correlation between the unbalance and 
rotational unbalance.

5. RESULTS FROM THE LINEAR EXAMPLE

Table 2 contains the rotor data that was used for the examples and came from Friswell et al. [9]. The 
state-space technique was used for the solution of the eigenvalues [10].

Figure 2 shows the Campbell diagram for the operational range from 0 to 3,800 rpm. The intersection 
points correspond to the vertical rigid-body eigenvalues. The X value denotes the speed (Ω) at which the 
eigenvalue was calculated, and the Y value is the actual eigenvalue result.

Table 2. Data from the Dynamics of Rotating Machines [8].

Input Parameter Symbol Value Units
Moment of inertia (xx and yy) 𝐼𝑑 2.8625 𝑘𝑔 𝑚2

Polar moment of inertia (zz) 𝐼𝑝 0.6134 𝑘𝑔 𝑚2

Rotor mass 𝑚𝑑 122.68 𝑘𝑔
Acceleration of gravity 𝑔 9.81 𝑚/𝑠2

Height above CG 𝑎 0.250 𝑚
Height under CG 𝑏 0.250 𝑚
Upper stiffness (H) 𝑘𝑥1 1.0E+6 𝑁/𝑚
Lower stiffness (H) 𝑘𝑥2 1.3E+6 𝑁/𝑚
Upper stiffness (V) 𝑘𝑦1 1.5E+6 𝑁/𝑚
Lower stiffness (V) 𝑘𝑦2 1.8E+6 𝑁/𝑚
Upper damping (H) 𝑐𝑥1 20.0 𝑁.𝑠/𝑚
Lower damping (H) 𝑐𝑥2 26.0 𝑁.𝑠/𝑚
Upper damping (V) 𝑐𝑦1 30.0 𝑁.𝑠/𝑚
Lower damping (V) 𝑐𝑦2 36.0 𝑁.𝑠/𝑚
Rotational unbalance 𝛽 0.0 or 1.0E-3 𝑟𝑎𝑑
Phase angle 𝛾 𝜋/2 𝑟𝑎𝑑
Lateral unbalance 𝑚𝜀 1.0E-2 or 0.0 𝑘𝑔.𝑚
Phase angle (in 𝑚𝜀 ) 𝛿 0.0 𝑟𝑎𝑑



Figure 2. Campbell diagram.

Calculations of the unbalance response were also made at steady-state conditions using the complex form 
of the EOM [11].  

Figures 3 and 4 show the results for the displacements 𝑢 and 𝑣 for an unbalance 𝑚𝜀 = 1.0E-2 kg.m and 
𝛽 =  0.0 rad.

Figure 3. Displacement u amplitude (𝒎𝜺 =  𝟏.𝟎E-2 kg.m and 𝜷 = 𝟎.𝟎 rad).



Figure 4. Displacement v amplitude (𝒎𝜺 =  𝟏.𝟎E-2 kg.m and 𝜷 = 𝟎.𝟎 rad).

Figures 5 and 6 show the results for the displacements 𝑢 and 𝑣 for an unbalance 𝑚𝜀 = 0.0 kg.m and 
𝛽 = 1.0E-3 rad.

Figure 5. Displacement u amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 = 𝟏.𝟎E-3 rad).

Figure 6. Displacement v amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 = 𝟏.𝟎E-3 rad).



6. PROCEDURE FOR SOLVING THE NONLINEAR EOM

The results from the unbalance response calculations in the linearized EOM were obtained assuming 
steady-state conditions, but this assumption does not hold for the nonlinear EOM. The process requires a 
differential equation solver, and for these calculations the MATLAB@ subroutine ode45 was used. 
Ode45 uses the fourth-order Runge ― Kutta method. Also, a time step and the value of the angular 
acceleration of the driver will be required. For this procedure, it will be assumed that the constant angular 
acceleration (𝛼), angular velocity, and angular displacement will be defined as a function of 𝛼 and time 
(t), as shown in the following equations:

𝜙 =  𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (33)

𝜙 =  𝛼 𝑡, (34)

and

𝜙 =  
1
2  𝛼 𝑡2. (35)

The unbalance vector {𝑈} will require an extra term (Eq. 32) because of the angular acceleration. The 
expression for {𝑈} is

{𝑈} =  𝜙2 

                  𝑚𝜀 cos(𝜙 +  𝛿)
                  𝑚𝜀 sin(𝜙 +  𝛿)
― 𝐼𝑑 ― 𝐼𝑝  𝛽 sin(𝜙 +  𝛾)

     𝐼𝑑 ― 𝐼𝑝  𝛽 cos(𝜙 +  𝛾)

+  𝜙 

   𝑚𝜀 sin(𝜙 +  𝛿)
―𝑚𝜀 cos(𝜙 +  𝛿)
  𝐼𝑑 𝛽 cos(𝜙 +  𝛾)
  𝐼𝑑 𝛽 sin(𝜙 +  𝛾)

. (36)

In summary, the EOMs for the nonlinear system are

𝑚𝑑𝑢 +  𝐹𝑢 =  𝑈1, (37)

𝑚𝑑𝑣 +  𝐹𝑣 =  𝑈2, (38)

𝐼𝑑 𝜃 +  𝐼𝑝 𝜙 𝜓 cos 𝜃 + 𝐼𝑑 ― 𝐼𝑝  𝜓2 sin 𝜃 cos 𝜃 +  𝐹𝜃 =  𝑈3, (39)

and

𝐼𝑑 cos2 𝜃 + 𝐼𝑝 sin2 𝜃 𝜓 ―  𝐼𝑝𝜙 sin 𝜃 ― 𝐼𝑝 𝜙 𝜃  cos 𝜃

+2 𝐼𝑝 ― 𝐼𝑑  𝜓 𝜃 sin 𝜃 cos 𝜃 + 𝐹𝜓 =  𝑈4.
(40)

The values for 𝜙,𝜙,𝜙  are defined by Eqs. (33), (34), and (35).



7. RESULTS FOR THE NONLINEAR EXAMPLE

For the nonlinear example, an angular acceleration of 𝛼 = 0.01 rad/s2 and a time step of 𝛿𝑡 = 0.001 s will 
be used along with the initial conditions for all the parameters. The displacements and their first 
derivatives are zero.

For comparison purposes, the data for the steady-state calculations will be used for the calculations using 
the nonlinear EOMs. The results are shown on the following pages (Figures 7–8).

Figure 7. Displacement u amplitude (𝒎𝜺 =  1.0E-2 kg.m and 𝜷 = 𝟎.𝟎 rad).

Figure 8. Displacement v amplitude (𝒎𝜺 =  1.0E-2 kg.m and 𝜷 = 𝟎.𝟎 rad).

The results from the nonlinear calculations compare well with the steady-state values. 

As shown in Figure 7, the u amplitude of 0.02831 m at 1,291 rpm is comparable to the u amplitude of 
0.02901 m at 1,289 rpm in Figure 3.

Similarly, the v amplitude of 0.02442 m at 1,556 rpm in Figure 8 is comparable to the v amplitude of 
0.02500 m at 1,556 rpm in Figure 4.



The calculations made at steady-state conditions will always have a larger amplitude than the nonlinear 
results because in steady-state conditions, infinite time for the amplitude to grow at the critical speed 
exists. That is not true for the nonlinear case where the angular acceleration (𝛼) must always be greater 
than zero. 

As shown in Figure 9, the u amplitude of 0.004941 m at 1,290 rpm is comparable to the u amplitude of 
0.005009 m at 1,289 rpm in Figure 5. 

Similarly, the v amplitude of 0.02524 m at 1,556 rpm in Figure 10 is comparable to the v amplitude of 
0.02567 m at 1,556 rpm in Figure 6.

Figure 9. Displacement u amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 =  1.0E-3 rad).

Figure 10. Displacement v amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 =  1.0E-3 rad).

All these results indicate that the unbalance force in the nonlinear cases is producing similar results as in 
the steady-state conditions for the set of imbalances that were chosen. The next section will show how a 
change of the 𝛽 angle can bring the system into a chaotic mode.



8. EXAMPLE THAT EXHIBITS CHAOTIC BEHAVIOR

As shown in Eqs. (37)–(40), the EOMs for 𝜃 and 𝜙 are the ones that contain a greater number of higher-
order terms, which may lead to sensitivity in nonlinear behavior. The author has corroborated this fact by 
doing multiple calculations using different values of 𝑚𝜀 and 𝛽 and found that the system response is very 
sensitive to 𝛽.

The same system parameters will be used for the next calculations, except that the value for 𝛽 will be 
increased from 1.0E-3 rad to 1.0E-2 rad (one order of magnitude increment). The results are shown in 
Figures 11–12.

Figure 11. Displacement u amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 =  1.0E-2 rad).

Figure 12. Displacement v amplitude (𝒎𝜺 = 𝟎.𝟎 𝐤𝐠.𝐦 and 𝜷 =  1.0E-2 rad).

Notably, in Figures 11 and 12, the first two critical speeds (1,289 and 1,556 rpm, which are associated 
with 𝑢, 𝑣, respectively) remain linear. The amplitude at 1,289 rpm in Figure 11 is one order of magnitude 
larger than the value in Figure 9. The amplitude at 1,556 rpm in Figure 12 is one order of magnitude 
larger than the value in Figure 10. However, once the speed reached the last two critical speeds (which are 
related to θ, ψ), the response was nonlinear.



For the next critical speed, the maximum amplitude is located at 2,059 rpm, which is slightly lower than 
the linear eigenvalue of 2,068 rpm. Also, the curves (at u and v) no longer behave in a strictly vertical 
form, which is the so-called “softening spring” nonlinear behavior.

The next linear critical speed is predicted at 2,737 rpm; starting at about that speed, a change in the 
behavior in the system can be observed. At 3,393 rpm, a “jump” of very short duration but of high 
intensity occurs. This behavior is depicted in full in the orbits shown in Figures 13 and 14.

Figure 13. Orbits on the x–y plane shown in time (vertical axis).

Figure 14. Orbits on the x–y plane for the entire operational range.

After the jump, the system reaches steady-state conditions and remains there for the duration of the 
calculations. Definitions like “softening spring,” “hardening spring,” and “jump” are common in 
nonlinear theory, and a short explanation of the Duffing equation in the next section will provide a better 
understanding of these topics. 

9. DUFFING EQUATION

The Duffing equation [12] will be used to explain some of the nonlinear features that were observed in the 
vertical rigid-rotor example. The Duffing equation is



𝑥 + 𝑐𝑥 +  𝜔2
𝑛𝑥 ± 𝜇𝑥3 = 𝐹 cos(𝜔𝑡 + 𝜙). (41)

The nonlinear stiffness 𝜇𝑥3 can have a positive or negative sign and will define the system as a hardening 
or softening spring.

The frequency response is calculated from the following expression:

𝐹2 =  𝜔2
𝑛 ―  𝜔2 𝐴 +

3
4 𝜇𝐴3 + [𝑐𝜔𝐴]2, (42)

where A is the amplitude of the solution for x.

𝑥 = 𝐴 cos(𝜔𝑡) (43)

Figure 15 shows the frequency response as a function of the excitation frequency (𝜔) with 𝑐 = 0.1 , 𝜔2
𝑛

=  1.0, 𝐹 = 1.0, and values of 𝜇 =  ― 0.003 →0.040. Brennan et al. [13] show results in a similar fashion 
as Figure 15.

Figure 15. Frequency response.

The red line represents the frequency response in the absence of any nonlinearity. The magenta and green 
lines correspond to hardening-spring cases for different degrees of 𝜇. The cyan line is a case for the 
softening-spring example. The blue lines are “exclusion zones,” which means no vibrational activity will 
occur in this unstable area, and the curve will have to follow a different path on the run-up or coast-down. 
Figure 16 shows the paths used to avoid the unstable zone.



Figure 16. Frequency response (𝝁 = 𝟎.𝟎𝟒𝟎𝟎); jump phenomena—paths to follow.

On the run-up from the peak amplitude at point a, no other possibility exists but to go to b and then 
continue all the way up in speed to c. On the coast-down, point c will move to d, and the only way to be 
able to continue the descent in frequency is to move up to point e.

The same parameters used to determine the frequency response will be used to calculate the transient for 
𝜇 = 0.0400. This is shown in Figure 17.

Figure 17. Transient result for 𝝁 = 𝟎.𝟎𝟒𝟎0.

The peak amplitude of Figure 17 is very similar to the peak value of Figure 16 that was calculated for 
steady-state conditions with the same parameters. Figure 17 clearly depicts the jump from the peak value 
in the manner predicted for a hardening-spring, nonlinear system (𝜇 = 0.04).



With a change of parameters, inducing a chaotic response is possible, as shown in Figure 18.

Figure 18. Chaotic response.

The set of adimensional parameters used in Figure 18 were 𝑐 = 0.3,  𝜔2
𝑛 =  ― 1.0,  𝐹 = 0.37, and 𝜇 =  1.0

. The negative sign in the 𝜔2
𝑛 term only means that the linear stiffness is negative. 

These examples clearly illustrate the response of a nonlinear system and help put the results shown in 
Figures 11–14 into perspective. 

10. SOURCES OF NONLINEARITIES ON ROTORS

Nonlinearities in rotors are a very common phenomena and are the source of instabilities in a rotor-
bearing system. By nature, most of the systems are nonlinear but have operational conditions that tend to 
avoid the nonlinear range. Among these conditions are large imbalances (the topic of this paper), fluid-
film–bearing parameters, labyrinth seals clearances, internal stiffness, internal damping, and so on. The 
most important sources of nonlinearities on rotors are described in the following paragraphs.

Residual unbalance. As shown in this paper, an excess of residual unbalance (of the rotational type) could 
introduce softening- and hardening-spring effects on the system, and for very large values (of unbalance) 
it can lead to chaotic conditions on the system. During the preparation of this paper the author was also 
able to excite the lateral modes if the residual lateral unbalance is large enough.

Fluid-film bearings. These bearings can show nonlinear behavior at large speeds, which is when the 
journal whirls close to the bearing geometrical center. The rotor dynamic program Dyrobes can simulate 
the effect of the journal bearings in the unbalance response of the rotor-bearing system. 

Internal stiffness. Most of the rotors have materials that are isotropic, which means that the material has 
the same properties in all directions, but orthotropic materials exist that will have different properties in 
orthogonal directions, which are the sources of instabilities in the rotor-bearing system. However, if a 
rotor is required to be designed with asymmetric cross sections, as with the case of a two-pole generator 
rotor for power generation, then this rotor at the balancing stand will encounter instabilities due to thermal 
expansion as a result of the rotor asymmetry with large electrical currents that generate heat. Ways to 
counteract this phenomena exist, and several rotordynamic books [2] will have a detailed explanation of 
this phenomena.



Labyrinth seals. These devices are used to control the interstage leaking in rotating machinery but are also 
the source of instabilities. The fluid inside the labyrinth seal will introduce forces on the system with 
strong values of cross-coupled stiffness (Kxy, Kyx) that, when combined, will produce a tangential force on 
the system in opposition to the external damping from the rotor-bearing system. If the cross-couple 
stiffnesses are large enough, the net damping will be zero or negative, in which case the rotor turns 
unstable with a subsynchronous trace. Laboratory tests have shown that the tangential forces generated on 
a labyrinth seal are a strong function of the “swirl” of the fluid. Anti-swirl devices are used to counteract 
this phenomenon, and special seal designs like the honeycomb seal are designed to reduce the swirl 
content.

In summary, all the mentioned examples have the same source—the cross-couple terms, Kxy, Kyx, which 
are generated by different mechanisms on the rotor-bearing system. 

11. CONCLUSIONS

 The results from the nonlinear calculations compare well with the steady-state values if the 
unbalances are in the low- to moderate-value range.

 The practice of accelerating the rotor during the run-up reduces the amplitudes of motion in the rotor-
bearing system, which facilitates crossing through the critical speeds. The same angular acceleration 
value (but with the opposite sign) should be used during the coast-down to minimize the amplitudes 
of motion as well.

 Large unbalances will trigger a nonlinear response, and the 𝜃,𝜓 terms are the most sensitive to this 
effect, which explains the need to have good control of the rotational unbalance in the rotor-bearing 
system.

 Notably, in Figures 11 and 12, the first two critical speeds (1,289 and 1,556 rpm, which are associated 
with 𝑢 and 𝑣, respectively) remain linear. 

 The nonlinear motions are triggered with large values of 𝛽, and the nonlinear effects showed up in the 
form of softening-spring and chaotic motions for the last two critical speeds, respectively. 
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APPENDIX A. 

𝑘𝑥𝑇 = 𝑘𝑥1 +   𝑘𝑥2
𝑘𝑥𝐶 = ―𝑎 𝑘𝑥1 +  𝑏 𝑘𝑥2
𝑘𝑥𝑅 = 𝑎2 𝑘𝑥1 +  𝑏2 𝑘𝑥2

𝑘𝑦𝑇 = 𝑘𝑦1 +   𝑘𝑦2
𝑘𝑦𝐶 = ―𝑎 𝑘𝑦1 +  𝑏 𝑘𝑦2
𝑘𝑦𝑅 = 𝑎2 𝑘𝑦1 +  𝑏2 𝑘𝑦2

𝑐𝑥𝑇 = 𝑐𝑥1 +   𝑐𝑥2
𝑐𝑥𝐶 = ―𝑎 𝑐𝑥1 +  𝑏 𝑐𝑥2
𝑐𝑥𝑅 = 𝑎2 𝑐𝑥1 +  𝑏2 𝑐𝑥2

𝑐𝑦𝑇 = 𝑐𝑦1 +   𝑐𝑦2
𝑐𝑦𝐶 = ―𝑎 𝑐𝑦1 +  𝑏 𝑐𝑦2
𝑐𝑦𝑅 = 𝑎2 𝑐𝑦1 +  𝑏2 𝑐𝑦2




